

GCE MARKING SCHEME

CHEMISTRY (NEW) AS/Advanced

JANUARY 2010

PMT

CH1

SECTION A

(Arrow must be directed upwards for mark).

5.	Sketch a diagram to show the shape of a p-orbital.				
	Dumbbell shape or appropriate diagram 1 mark				
6.	(a)	<i>Dynamic equilibrium</i> is when the rate of the forward reaction is equal (and opposite) to the rate of the reverse reaction. 1 mark	[1]		
	(b)	A chomical system is in aquilibrium when:			

(b)	A chemical system is in equilibrium when:		
	there is no change in the amount of each species p	present /	
	there is no change in the concentrations present /		
	the physical properties are constant.	1 mark	[1]

Section A Total [10]

PMT

SECTION B

7.	(a)	(i)	<i>Isotopes</i> are atoms with the same atomic number but different mass number / same number of protons but different numbers of neutrons.						
							1 mark	[1]	
		(ii)	(¹⁹¹ lr)	77 protons	114 ne	eutrons	77 electrons	1 mark	
			(¹⁹³ lr)	77 protons	116 ne	eutrons	77 electrons	1 mark [2]	
		(iii)	Height of e or (by rule % abunda (¹⁹¹ lr) <u>19</u>	each peak: $(^{191}$ lr) r) nce $\frac{x 100}{50} = 3$	19 units 38 mm 8% (¹⁹³ lr)	(¹⁹³ lr) <u>31 x 10</u> 50	31 units 62 mm <u>00</u> = 62%	[2] 1 mark 1 mark	
	(b)	(i)	Loss of an	electron (fro	om the nucleu	us).	1 mark	[1]	
		(ii)	Mass num	ber 192	Symb	ol Pt	1 mark for eac	ch [2]	
	(c)	(i)	<i>Half-life</i> is	the time take	en for half the	e amount	t of material to 1 mark	decay. [1]	
		(ii)	Half-life of	¹⁹² lr =	73 (± 1) days	i	1 mark	[1]	
		(iii)	1.25 g left / 3 half live	$(10 \rightarrow 5 \rightarrow 2)$ es elapsed	2.5 → 1.25 g))	1 mark		
			3 x 73 day (2 marks fe the half life	ys = 219 d or correct an e obtained in	lays swer with no (c) (ii))	working	1 mark . Mark conseq	uentially on [2]	
		(iv)	Rate of de	cay of ¹⁹² lr (g day ⁻¹) durin	ig the firs	st 20 days.		
		Mass	decayed in	20 days = 10	0 - 8.3 = 1.7	g	1 mark		
		(Since rate = (No p	e for the first : 1.7 / 20 = enalty if unit	20 days the 0.085 g day ⁻ s omitted, bu	line is indisti 1 It do not allov	inguishat w if wron	ole from linear) 1 mark g units given)	[2]	

(d)	(i)		Sodium	Iridium	Chlorine	
		Moles	10.2 / 23 = 0.443	42.6 / 192 = 0.222	47.2 / 35.5 = 1.330	
					1 mark	
		Ratio	0.443 / 0.222	0.222 / 0.222	1.330 / 0.222	
		Hence	Na ₂ IrCl ₆		1 mark	[2]
	(ii)	P is Na ₂ IrCl ₆				
		So for 2	NaCl + $IrCl_x \rightarrow$	Na ₂ IrCl ₆		
		x must be 4 / IrCl ₄ (Mark consequentially if formula of P is incorrect)			1 mark	[1]
						Total [17]

8.	(a)	(i)	Reaction 1 is the most effective. 1 mark Lowest number moles Na_2CO_3 needed per mole Highest number moles CO_2 absorbed per mole N or equivalent statement	CO ₂ / la ₂ CO ₃ / 1 mark	[2]
			QWC The information is organised clearly and conspecialist vocabulary where appropriate. 1 mark awarded if candidate has clearly explained with appropriate use of words such as <i>mole</i> or <i>ra</i>	oherently, using d their reasoning <i>tio</i> .	[1]
		(ii)	Le Chatelier's Principle: When a system in equilibrium is subjected to a ch processes which occur are such as to oppose the change. (or equivalent statement)	hange, the e effect of the 1 mark	[1]
		(iii)	More efficient at high gas pressure. (Whichever reaction is used gases only occur and so by Le Chatelier's Principle) high pressure will reaction because of the reduction in the number of	1 mark longst the reacta favour the forwar of moles of gas. 1 mark	nts, d [2]
	(b)	(i)	Exothermic. As the temperature increases, less product (NaH reactants (Na ₂ CO ₃ , CO ₂ and H ₂ O) are present so favoured and forward reaction must be exotherm (or any equivalent statement)	1 n CO ₃) / more reverse reaction ic 1 mark	mark is [2]
		(ii)	 (NaHCO₃ can be used to regenerate sodium c heating (to 90°C) 	arbonate) by 1 mark	[1]
			II Either Energy must be supplied for heating (with or CO ₂ (g) would be released into the enviror prevention measures taken, negating the carbonate to absorb CO ₂ (g)).	cost implications ment (unless point of using so 1 mark	s) dium [1]

(c)	(i)	Relative molecular mass $CO_2 = 44$	1 mark			
		No moles $CO_2 = 275 / 44 = 6.25$	1 mark	[2]		
	(ii)	$6.25 \times 24.0 = 150 \mathrm{dm}^3$	1 mark	[1]		
	(iii)	150 x 100 / 1000 = 15%	1 mark	[1]		
(d)	(i)	An acid is an H ⁺ / proton donor.	1 mark	[1]		
	(ii)	(Although CO ₂ does not contain any hydrogen) it reacts with water to produce H ⁺ ions /				
		to form H_2CO_3 .	1 mark	[1]		
	(iii)	Carbon dioxide from air will produce H^+ ions / make the water acidic and acids have pH less than 7. 1 mark				

Total [17]

PMT

9.	(a)	(i)	1 mark for setting up correctly $\Delta H^{\circ} = 243 + 436 - (2 \times 432)$		
			1 mark for calculation $\Delta H^{e} = -185 \text{ kJ mol}^{-1}$		[2]
		(ii)	$\Delta H_{\rm f}^{\bullet}$ HCl (g) = -185 / 2 = -92.5 kJ mol ⁻¹ (Mark consequentially if ΔH^{\bullet} value incorrect)	1 mark	[1]
		(iii)	2 x 1 mark for: Temperature 25°C / 298 K Pressure 1 atm		[2]
		(iv)	Chlorine – chlorine bond (as it is the weakest).	1 mark	[1]
		(v)	Blue and violet light provide sufficient energy to break the Cl ₂ covalent bond	2 x 1 mark 1 mark.	[3]
		(vi)	No visible light has sufficient energy to break the H-CI bond.	1 mark	[1]

- 6 x 1 mark:
 - Correct drawing of profile (must be exothermic and show reactants / products)
 - Activation Energy is the minimum energy necessary for a reaction to occur
 - Increasing temperature increases the (kinetic) energy of molecules
 - so more molecules have greater than the activation energy (and reaction speeds up)
 - A catalyst lowers the activation energy
 - so speeds up the reaction.
 (the points may be made in conjunction with the profile diagram).
- QWC Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning. 1 mark

Selection of a form and style of writing appropriate to purpose and to complexity of subject matter. In particular, relating text to the profile diagram. 1 mark [2]

Total [18]

10. (a)Transfer of H⁺ (from HCl to
$$NH_3$$
)1 markHCl acid, NH_3 base1 mark[2]

(b) (i)
$$\Delta H = \frac{- \mathrm{vc} \Delta T}{\mathrm{n}}$$

(C)

1 mark for total volume = 50 cm^3

1 mark for converting kJ to J (or vice versa)

1 mark for calculating n (mark consequentially if set up wrongly above)

$$-53.4 \times 1000 = \frac{-50 \times 4.2 \times 0.7}{n}$$
n, no moles NH₃ = 2.75 × 10⁻³
[3]
(ii) 2.75 × 10⁻³ mol NH₃ in 25 cm³
so concentration = 2.75 × 10⁻³ × 1000/25 = 0.11 mol dm⁻³
1 mark
[1]
(i) Mean titre = 31.23 cm³
1 mark

Concentration NH₃ = 31.23 x 0.100 / 25 = 0.125 cm° 1 mark [2]

(ii) Titration will give the more precise value for concentration 1 mark

2 marks for two of the following:

Temperature change only read to one significant figure, titre to three significant figures / titration is a more precise technique than thermometry. 1 mark

The titration is repeated three times (to obtain consistent results), but only one measurement of temperature change. 1 mark

Thermometric method susceptible to heat loss (but no corresponding problem in titrations). 1 mark [3]

(i) Both already elements in their standard states / no change needed to form them. 1 mark [1] the standard enthalpy change, ΔH , for the combustion of (ii) Т ammonia $4NH_3(g) + 3O_2(g) \rightarrow 2N_2(g) + 6H_2O(g)$ 1 mark for setting up $\Delta H^{e} = (2 \times 0) + (6 \times -241.8) - (4 \times -46.1) - (3 \times 0)$ 1 mark for calculation $\Delta H^{\prime} = -1450.8 + 184.4 = -1266.4 \text{ kJ mol}^{-1}$ [2] the standard enthalpy change, $\Delta H^{,}$, for the combustion of Ш methane $CH_4 \left(g\right) \ + \ O_2 \left(g\right) \ \rightarrow \ CO_2 \left(g\right) \ + \ 2H_2O \left(g\right)$ 1 mark for setting up $\Delta H^{\circ} = (1 \times -393.5) + (2 \times -241.8) - (1 \times -74.8) - (1 \times 0)$ 1 mark for calculation ΔH = -393.5 - 483.6 + 74.8 = -802.3 kJ mol [2] (iii) Advantage of using ammonia:

(d)

 (iii) Advantage of using ammonia: No CO₂ / greenhouse gases emitted
 Disadvantage of using ammonia:

Much less energy produced per mole on combustion

(318.6 v 802.3 kJ mol⁻) /more ammonia needed than methane to produce the same amount of energy /sharp smell of ammonia/ ammonia more corrosive. 1 mark [2]

Total [18]

PMT

Section B Total [70]